CURRICULUM GUIDE
 TO

 GEOMETRY COMMON COREAuthored by: Kristin Bizzarro
Stephanie Galvao
Christina Pawlowski

Revised by: Stephanie Centore
Amy Cappiello
Lynn Van Schaick

COMMACK UNION FREE SCHOOL DISTRICT COMMACK, NEW YORK

JULY 2014
June 2018

UNIT I: Coordinate Geometry (8 days) *days include one review day and one test day

Textbook	Concept/Skill	Timeline	Standards
	Coordinate Geometry Formulas - Slope of a line	1 day	G.GPE. 5 A
	Equation of a line - Slope-intercept form - Point-slope form - Parallel and perpendicular lines - Given a point and the equation of a line perpendicular - Given a point and the equation of a line parallel	2 days	G.GPE. 5 B
	Coordinate Geometry Formulas - Midpoint of a line segment - Equation of perpendicular bisector	2 days	
	Coordinate Geometry Formulas - Length of a line segment	1 day	

UNIT II: Basics (22 days)

Textbook	Concept/Skill	Timeline	Standards
	- Undefined and Defined Terms -Point, line, plane - Vocabulary (include symbols) -Collinear, line segment, congruent, midpoint, bisector of a line segment, bisector of an angle, ray, vector, angles (acute, obtuse, right, straight), linear pair, perpendicular lines, distance from a point to a line, triangles (scalene, isosceles, equilateral), complementary angles, supplementary angles, vertical angles, adjacent angles, median of a triangle, altitude of a triangle, exterior angle of a triangle, tangent to a circle, circumscribed, inscribed and regular polygons. Points of concurrency. Triangle inequality theorems. *Include in the vocabulary unit: how to name a line segment, how to name a line, how to name an angle (using letters and numbers), how to mark congruent parts. - Properties and Theorems -Sum of the angles of a triangle are 180 degrees, isosceles triangle theorem, vertical angles are congruent, exterior angle theorem, sum of the interior and exterior angles of a polygon -Algebra and explain - Parallel Lines -Algebra - Basic Constructions -Copy a line segment, isosceles triangle, equilateral triangles, copy an angle, angle bisector, segment bisector, perpendicular line (through a point on the line, through a point not on the line), perpendicular bisector, median of a triangle, altitude of a triangle, square,	8 days	$\begin{gathered} \text { G.CO. } 1 \\ \text { G-CO. } 12 \\ \text { G.CO. } 9 \\ \text { G.CO. } 10 \\ \text { G.CO. } 12 \\ \text { G.CO. } 13 \end{gathered}$

	parallel lines. Square, regular hexagon, and equilateral triangle inscribed in a circle. These constructions should be applied to others throughout the school year (example: construct a line that is tangent to a circle is the same as constructing a perpendicular line through a point. Construct the points of concurrency.		

UNIT III: Congruent Triangles (18 days)

Textbook	Concept/Skill	Timeline	Standards
	Properties and Postulates (include mini proofs) - Define Postulate and Theorem - Reflexive Property - Symmetric Property - Transitive Property - Substitution Postulate - Partition Postulate - Addition Postulate - Subtraction Postulate - Multiplication Postulate - Division Postulate	2 days	$\begin{aligned} & \text { G.SRT.5A } \\ & \text { G.SRT.5B } \end{aligned}$
	Congruent-Define and Recognize Using Rigid Motions - SSS - SAS - ASA - AAS - HL	3 days	
	Two-Column Proofs - Involving triangle congruence - Corresponding parts of congruent triangles are congruent	6 days	
	Overlapping Triangles Double Triangle Congruence	5 days	

UNIT IV: Parallel Lines (6 days)

Textbook	Concept/Skill	Timeline	Standards
	\bullet \bullet 	Proving parallel lines	G.CO.C.9
		5 days	G.CO.D. 12

UNIT V: Transformations (17 days)

Textbook	Concept/Skill	Timeline	Standards
	Transformational Geometry (include the concept that a transformation is a function ~input to an output) - Pt Reflections - Line Reflections -students need to know that the perpendicular bisector is also known as the line of reflection -construct the line of reflection -construct a figure given the line of reflection - Translations (include the line that you are moving along, if not on a coordinate plane) -students need to know that translations involve constructing parallel lines -Find the point on a line segment that partitions the segment into a given ratio (algebraically and using constructions) - Rotations -the students need to know that the intersection of the perpendicular bisectors of the segments connecting the corresponding points of the pre-image and the image finds the center of rotation (Module 1 pages 127-129) -given a center of rotation and degree measure, construct the image - Rotational Symmetry -Between 0 degrees and 360 degrees (non-inclusive) -Include rotational symmetry of polygons. Students should be able to determine the angle of rotation. - Reflections and Rotations that carry a figure onto itself (regular and irregular) - Rigid Motions -Rigid motions preserve angle measure and distance -Students should be able to identify if there is a rigid motion that will map one figure onto another -Ensure students are able to identify corresponding parts after	15 days	$\begin{aligned} & \text { G.CO. } 2 \\ & \text { G.CO. } 3 \\ & \text { G.CO. } 4 \\ & \text { G.CO. } 5 \\ & \text { G.CO. } 6 \\ & \text { G.CO. } 7 \\ & \text { G.CO. } 8 \\ & \text { G-SRT. } 5 \\ & \text { G.GPE. } 6 \end{aligned}$

	transformations occur. - Using transformations determine if pre- image and image are congruent Compositions of transformations -Students should be able to identify the composition of transformations as well as, identify one single transformation that would be equivalent to the composition.		
Teachers are expected to use software and transparencies to demonstrate transformations.			
Include examples of transformations that do not preserve angle measure and/or congruence.			

Unit VI: Similarity (20 days)

Textbook	Concept/Skill	Timeline	Standards
	Dilations -The center of dilation and scale factor must be mentioned -A dilation takes a line not passing through the center of the dilation to a parallel line -A dilation leaves a line passing through the center unchanged -Constructions of dilations **MIDTERM REVIEW** Similar Triangle Proof-include the concept of dilation - AA Similarity - SSS Similarity - SAS Similarity - Corresponding Sides of Similar Triangles are in Proportion Product of Means/ Extremes Similarity and Proportions - Ratio and Proportion -Mean Proportional/Geometric Mean - Proportions Involving Line Segments -A line segment drawn connecting two sides of triangle is parallel to the third side if and only if it divides the triangle proportionally -altitudes -medians -angle bisectors -areas -perimeters -volumes -Include the theorem "The segment connecting the midpoints of two sides of a triangle is parallel to the third side and half the measure of the length of the third side." - Similar Polygons	5 days 3-days 5 days	$\begin{aligned} & \hline \text { G.SRT.1A } \\ & \text { G.SRT.1B } \\ & \text { G.SRT. } 2 \\ & \text { G.SRT. } 3 \\ & \text { G.SRT. } 4 \\ & \text { G-SRT. } 5 \\ & \text { G.SRT. } 6 \\ & \text { G.SRT. } 7 \\ & \text { G.SRT. } 8 \end{aligned}$
	Similarity Transformations - Explain similarity transformations as the	2 days	

	equality of all corresponding pairs of angles and proportionality of all corresponding pairs of sides		
	Right Triangles \bullet Proportions in Right Triangle \bullet Pythagorean Theorem Proof using similarity	2-days 1-day	

UNIT VII: Trigonometry (10 days)

UNIT VIII: Quadrilateral Properties (21 days)

Textbook	Concept/Skill	Timeline	Standards
	Properties of Quadrilaterals - Trapezoid (definition: a quadrilateral with at least one pair of parallel sides) - Isosceles trapezoid - Parallelogram - Rectangle - Rhombus - Square	3 days	$\begin{gathered} \text { G.CO. } 11 \\ \text { G.GPE. } 4 \\ \text { G.GPE. } 5 \mathrm{C} \end{gathered}$
	Coordinate Geometry Proof: Triangles and Quadrilaterals - Numerical and Variable -using a compass -including not proofs	6 days	
	Two-Column/Paragraph Parallelogram Proofs - Using parallelogram, rectangle, rhombus, and square properties - Proving a parallelogram, rectangle, rhombus, and square	10 days	

Unit IX: Three-Dimensional Geometry (15 days)

Textbook	Concept/Skill	Timeline	Standards
	Three-Dimensional Figures - Identify the shapes of 2D cross sections of 3D objects - Identify 3D objects generated by rotations of 2D objects - Area and perimeter -Area of a triangle (using sine formula) -Include using the distance formula - Volume of a Prism, pyramid, cylinder, cone, sphere -students should be able to dissect any figure for example, removing the bottom portion of a cone will result in a frustum -informal limit arguments - Use geometry shapes and their measures and properties to describe objects (for example, a human torso is a cylinder) - Apply geometric methods to solve design problems. (for example, designing a structure with a physical constraint) - Apply concepts of density based on area and volume in modeling - Population Density	13 days	G.GMD. 1 G.GMD. 3 G.GMD. 4 G.MG. 1 G.MG. 2 G.MG. 3 G.SRT. 9 G.GPE. 7

Unit X: Geometry of a Circle (17 days)

Textbook	Concept/Skill	Timeline	Standards
	Arc Length - Distance around a circular arc - Give an informal argument for the formulas for circumference and area of a circle - Find the radian measure of an angle 1 radian $=\frac{180}{\pi}$ degrees - Find the degree measure of an angle 1 degree $=\frac{\pi}{180}$ radians - $S=\theta r$ Area of Sectors - Derive the formula	5 days	G.CO. 1 G.C. 1 G.C. 2 A G.C.2B G.C. 5 G.GMD. 1 G.GPE.1A G.GPE.1B G.GPE. 4
	Equation of a Circle - Completing the square -fractional radius - Derive the equation of a circle of given center and radius using the Pythagorean theorem - Use completing the square to find the center and radius of a circle - Knowing if a point lies on the circle Angles - Arcs and Angles - Inscribed Angles and their Measure - Angles formed by Tangents, Secants and Chords	2 days 3 days	
	Segments - Arcs and Chords - Tangents and Secants - Measure of Tangent Segments, Chords and Secant Segments	2 days	
	Circle Proofs - All circles are similar	3 days	

Unit XI: Regents Review (9 days)

Textbook	Concept/Skill	Timeline	Standards
	Regents Review	9 days	

References

Drance, D. (2014, April). Common Core-izing HS Math. Paper presented at Western Suffolk Boces.

Geometry Standards Clarification. (n.d.). Retrieved July 2, 2014, from Engage NY website: https://www.engageny.org/

Larson, R., \& Boswell, L. (2015). Geometry. Erie, PA: Big Ideas Learning.

Appendices

