CURRICULUM GUIDE TO GEOMETRY COMMON CORE

Authored by:

Kristin Bizzarro Stephanie Galvao Christina Pawlowski

Revised by: Stephanie Centore Amy Cappiello Lynn Van Schaick

COMMACK UNION FREE SCHOOL DISTRICT COMMACK, NEW YORK JULY 2014 June 2018

Textbook	Concept/Skill	Timeline	Standards
	Coordinate Geometry Formulas	1 day	G.GPE.5 A
	• Slope of a line		
	Equation of a line	2 days	G.GPE.5 B
	Slope-intercept form		
	Point-slope form		
	• Parallel and perpendicular lines		
	• Given a point and the equation of a line perpendicular		
	• Given a point and the equation of a line parallel		
	Coordinate Geometry Formulas	2 days	
	• Midpoint of a line segment		
	• Equation of perpendicular bisector		
	Coordinate Geometry Formulas	1 day	
	• Length of a line segment		

UNIT I: Coordinate Geometry (8 days) *days include one review day and one test day

Textbook	Concept/Skill	Timeline	Standards
	Undefined and Defined Terms		G.CO.1
	-Point, line, plane		G-CO.12
			G.CO.9
	• Vocabulary (include symbols)	8 days	G.CO.10
	-Collinear, line segment, congruent,		G.CO.12
	midpoint, bisector of a line segment,		G.CO.13
	bisector of an angle, ray, vector, angles		
	(acute, obtuse, right, straight), linear		
	pair, perpendicular lines, distance from		
	a point to a line, triangles (scalene,		
	isosceles, equilateral), complementary		
	angles, supplementary angles, vertical		
	angles, adjacent angles, median of a		
	triangle, altitude of a triangle, exterior		
	angle of a triangle, tangent to a circle, circumscribed, inscribed and regular		
	polygons. Points of concurrency.		
	Triangle inequality theorems.		
	Thangle inequality theorems.		
	*Include in the vocabulary unit: how to		
	name a line segment, how to name a		
	line, how to name an angle (using		
	letters and numbers), how to mark		
	congruent parts.		
		2 days	
	Properties and Theorems	2 days	
	-Sum of the angles of a triangle are 180		
	degrees, isosceles triangle theorem,		
	vertical angles are congruent, exterior angle theorem, sum of the interior and		
	exterior angles of a polygon		
	-Algebra and explain		
	-Aigeora and Capiani		
	Parallel Lines	2 days	
	-Algebra	-	
	Basic Constructions	0.1	
	-Copy a line segment, isosceles	8 days	
	triangle, equilateral triangles, copy an		
	angle, angle bisector, segment bisector,		
	perpendicular line (through a point on		
	the line, through a point not on the		
	line), perpendicular bisector, median of		
	a triangle, altitude of a triangle, square,		

UNIT II: Basics (22 days)

parallel lines. Square, regular hexagon, and equilateral triangle inscribed in a circle. These constructions should be applied to others throughout the school year (example: construct a line that is tangent to a circle is the same as constructing a perpendicular line through a point. Construct the points of concurrency.			
---	--	--	--

Textbook	Concept/Skill	Timeline	Standards
	Properties and Postulates (include mini proofs)	2 days	G.SRT.5A
	Define Postulate and Theorem		G.SRT.5B
	Reflexive Property		
	Symmetric Property Transitive Property		
	Transitive PropertySubstitution Postulate		
	 Partition Postulate 		
	Addition Postulate		
	Subtraction Postulate		
	Multiplication Postulate		
	Division Postulate		
	Congruent-Define and Recognize Using Rigid Motions SSS SAS ASA AAS HL 	3 days	
	 Two-Column Proofs Involving triangle congruence Corresponding parts of congruent triangles are congruent 	6 days	
	Overlapping Triangles Double Triangle Congruence	5 days	

UNIT III: Congruent Triangles (18 days)

Textbook	Concept/Skill	Timeline	Standards
	 Proving parallel lines Proofs using parallel lines	5 days	G.CO.C.9 G.CO.D.12

UNIT IV: Parallel Lines (6 days)

Textbook	Concept/Skill	Timeline	Standards
	Transformational Geometry (include the		G.CO.2
	concept that a transformation is a function	15 days	G.CO.3
	~input to an output)		G.CO.4
	Pt Reflections		G.CO.5
	Line Reflections		G.CO.6
	-students need to know that the		G.CO.7
	perpendicular bisector is also known as		G.CO.8
	the line of reflection		G-SRT.5
	-construct the line of reflection		G.GPE.6
	-construct a figure given the line of		
	reflection		
	• Translations (include the line that you		
	are moving along, if not on a coordinate		
	plane)		
	-students need to know that translations		
	involve constructing parallel lines		
	-Find the point on a line segment that		
	partitions the segment into a given ratio		
	(algebraically and using constructions)		
	Rotations		
	-the students need to know that the		
	intersection of the perpendicular		
	bisectors of the segments connecting the		
	corresponding points of the pre-image		
	and the image finds the center of		
	rotation (Module 1 pages 127 -129)		
	-given a center of rotation and degree		
	measure, construct the image		
	 Rotational Symmetry Between 0 degrees and 360 degrees 		
	(non-inclusive)		
	-Include rotational symmetry of		
	polygons. Students should be able to		
	determine the angle of rotation.		
	 Reflections and Rotations that carry a 		
	figure onto itself (regular and		
	irregular)		
	Rigid Motions		
	-Rigid motions preserve angle measure		
	and distance		
	-Students should be able to identify if		
	there is a rigid motion that will map one		
	figure onto another		
	-Ensure students are able to identify		
	corresponding parts after		

UNIT V: Transformations (17 days)

 transformations occur. Using transformations determine if pre- image and image are congruent Compositions of transformations Students should be able to identify the composition of transformations as well as, identify one single transformation that would be equivalent to the composition. 		
Teaching Notes	•	
e expected to use software and transparencies to d mples of transformations that do not preserve angl		

Textbook	Concept/Skill	Timeline	Standards
	Dilations -The center of dilation and scale factor must be mentioned -A dilation takes a line not passing through the center of the dilation to a parallel line -A dilation leaves a line passing through the center unchanged -Constructions of dilations **MIDTERM REVIEW**	5 days	G.SRT.1A G.SRT.1B G.SRT.2 G.SRT.3 G.SRT.4 G-SRT.5 G.SRT.6 G.SRT.7 G.SRT.8
	 Similar Triangle Proof-include the concept of dilation AA Similarity SSS Similarity SAS Similarity Corresponding Sides of Similar Triangles are in Proportion Product of Means/ Extremes 	3-days	
	 Similarity and Proportions Ratio and Proportion -Mean Proportional/Geometric Mean Proportions Involving Line Segments -A line segment drawn connecting two sides of triangle is parallel to the third side if and only if it divides the triangle proportionally -altitudes -medians -angle bisectors -areas -perimeters -volumes -Include the theorem "The segment connecting the midpoints of two sides of a triangle is parallel to the third side and half the measure of the length of the third side." 	5 days	
	Similarity Transformations • Explain similarity transformations as the	2 days	

Unit VI: Similarity (20 days)

equality of all corresponding pairs of angles and proportionality of all corresponding pairs of sides		
 Right Triangles Proportions in Right Triangle Pythagorean Theorem Proof using similarity 	2-days 1-day	

Textbook	Concept/Skill	Timeline	Standards
	Pythagorean Theorem	3 days	G.SRT.7
	Trigonometric Ratios		G.SRT.8
	• Use trig ratios and the pyth. thm. to	3 days	
	solve right triangles in applied		
	problems.		
	Cofunctions	2 days	
	-Sine and Cosine only		
	$-\sin(x) = \cos(90-x)$		
	-students have to mention		
	complementary! (June 2016)		

UNIT VII: Trigonometry (10 days)

Textbook	Concept/Skill	Timeline	Standards
	Properties of Quadrilaterals	3 days	G.CO.11
	• Trapezoid (definition: a quadrilateral		G.GPE.4
	with at least one pair of parallel sides)		G.GPE.5C
	Isosceles trapezoid		
	Parallelogram		
	• Rectangle		
	Rhombus		
	• Square		
	Coordinate Geometry Proof: Triangles and	6 days	
	Quadrilaterals		
	Numerical and Variable		
	-using a compass		
	-including not proofs		
	Two-Column/Paragraph Parallelogram Proofs	10 days	
	• Using parallelogram, rectangle,		
	rhombus, and square properties		
	• Proving a parallelogram, rectangle,		
	rhombus, and square		

UNIT VIII: Quadrilateral Properties (21 days)

Textbook	Concept/Skill	Timeline	Standards
	Three-Dimensional Figures	13 days	G.GMD.1
	• Identify the shapes of 2D cross sections	•	G.GMD.3
	of 3D objects		G.GMD.4
	• Identify 3D objects generated by		G.MG.1
	rotations of 2D objects		G.MG.2
	• Area and perimeter		G.MG.3
	-Area of a triangle (using sine formula)		G.SRT.9
	-Include using the distance formula		G.GPE.7
	• Volume of a Prism, pyramid, cylinder,		
	cone, sphere		
	-students should be able to dissect any		
	figure for example, removing the bottom		
	portion of a cone will result in a frustum		
	-informal limit arguments		
	• Use geometry shapes and their measures		
	and properties to describe objects (for		
	example, a human torso is a cylinder)		
	• Apply geometric methods to solve design problems. (for example,		
	designing a structure with a physical		
	constraint)		
	 Apply concepts of density based on area 		
	and volume in modeling		
	 Population Density 		
	- I optimion Donoty		

Unit IX: Three-Dimensional Geometry (15 days)

Textbook	Concept/Skill	Timeline	Standards
	Arc Length	5 days	G.CO.1
	• Distance around a circular arc		G.C.1
	• Give an informal argument for the		G.C.2A
	formulas for circumference and area of a		G.C.2B G.C.5
	circle		G.C.S G.GMD.1
	• Find the radian measure of an angle		G.GPE.1A
	$1 \operatorname{radian} = \frac{180}{2} \operatorname{degrees}$		G.GPE.1B
	π		G.GPE.4
	• Find the degree measure of an angle		
	$1 \text{ degree} = \frac{\pi}{180} \text{ radians}$		
	• $S = \theta r$		
	Area of Sectors		
	• Derive the formula		
	Equation of a Circle) dava	
	Equation of a Circle	2 days	
	 Completing the square -fractional radius 		
	 Derive the equation of a circle of given 		
	center and radius using the Pythagorean		
	theorem		
	• Use completing the square to find the		
	center and radius of a circle		
	• Knowing if a point lies on the circle		
	Angles	3 days	
	Arcs and Angles		
	• Inscribed Angles and their Measure		
	• Angles formed by Tangents, Secants		
	and Chords	2.1	
	Segments	2 days	
	Arcs and Chords Tangants and Seconts		
	Tangents and Secants Macoura of Tangent Segments, Chards		
	 Measure of Tangent Segments, Chords and Secant Segments 		
	Circle Proofs	3 days	
	All circles are similar	Juays	
L			l

Unit X: Geometry of a Circle (17 days)

Unit XI: Regents Review (9 days)

Textbook	Concept/Skill	Timeline	Standards
	Regents Review	9 days	

- Drance, D. (2014, April). *Common Core-izing HS Math.* Paper presented at Western Suffolk Boces.
- Geometry Standards Clarification. (n.d.). Retrieved July 2, 2014, from Engage NY website: https://www.engageny.org/

Larson, R., & Boswell, L. (2015). Geometry. Erie, PA: Big Ideas Learning.

Appendices